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Abstract

It is commonly recognized that top N queries belong to one of the most important query
classes in IR and MM retrieval, or more general, content based retrieval. A lot of work has
been done on query optimization in database research but that research has mainly focussed
on the area of optimization of databases in a business application environment. In IR research
also work has been done on query optimization but this is not directly applicable in a database
environment.

Exploiting the integrated content based retrieval technology in the mifilRor database sys-
tem, we intend to look into optimization of top N queries in MM DBMSs. This paper provides
a brief overview of current IR and database technology relevant to top N MM query optimiza-
tion. It also describes our DB environment and ideas on three major sub topics in the light of
top N MM query optimization: incorporate known fragmentation techniques to ensure scala-
bility, introduce a new intermediate optimizer layer that supports inter-object optimization,
develop a cost based optimizer for real MM querying. This paper will mainly focus on the
physical design part since that part has the strongest ties with the IR field.
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1 Introduction

Most current MM! database systems are not really what the name suggests them to be. First of all
they often only operate on one single media type, in most cases 2D images, or sometimes audio.
Secondly, these systems are not really database systems but merely large monolithical systems
with a lot of data. The consequence of this is that these systems still do not really address Multi
Media retrieval and lack the properties and accompanying advantages of a real database system,
such as scalability, extensibility, data independency, etcetera.

In our group research is being done on building a reasl MM DBMS [HVBB98, dV98, dVW99,
Do0099]. This research views MM retrieval as a general case of content based retrieval. Commonly
known statistical IR techniques have been incorporated in a new type of DBMS that promises to
overcome the historical efficiency bounds that usually render IR in a DB environment too slow.
This new prototype DBMS is build around an extensible, structured object algebra, called Moa
[BWK98], which functions as a layer on top of the Monet [BK95] main memory DBMS developed
at CWIL

Utilizing the basics from well known text retrieval systems, several generalizations were build: a
small one to experiment with audio retrieval and one to retrieve images using thesauri [Doo99],

IMM = multi media.



which both showed promising results, demonstrating that with this database system content based
MM retrieval should be very well possible. Since our system is able to handle the meta information
about all sorts of distinct media types, such as text, audio and images, within one query algebra,
e.g. Moa, it is expected to be much more easy to query those types together than in the current
MM database systems which either operate on single media or behave as mediator systems like
Garlic does [HKWY97].

However, the database properties, like scalability and extensibility, need to be proven to be avail-
able, still. Optimization plays an important role in supporting these properties, since it can
compensate the extra executions costs involved in scalability and extensibility. Optimization also
becomes important when dealing with real MM querying, since it then serves the scheduling of
how, when and where to evaluate which media type to get the desired results as quickly as possible.

Due to the limited perception capabilities of the human end user, content based retrieval results
are often ranked and only the best answers are returned. The queries that provide such kind of
answers are often called top N queries. It also might be very clear that these queries play a very
important role in the content based retrieval area and that optimizing this type of queries might
be very rewarding.

In this paper we describe our ideas on the optimization of top N queries in a MM DBMS setting.

The rest of this paper is structured as follows. First we introduce the top N query optimization
problem a little more in section 2. In section 3 we give an overview of important techniques from
the IR and database field relevant to the top N query optimization problem. In section 4 we
describe our ideas on what we as three major topics that one has to deal with when one wants to
build top N optimization facilities into an extensible MM DBMS. Finally we end this paper with
some concluding remarks in section 5.

2 Problem

A typical content based retrieval query is usually evaluated by computing some ranking based
on statistics and distances in feature spaces. The returned objects are then sorted by descending
relevance relative to the given query. Since users are limited in their capabilities of reviewing all
objects in that ranked list only a reasonable top of say N objects is returned.

However, this can turn out to be a quite time consuming process, in particular when done the
naive way. The first reason is that the number of objects (i.e. documents) in the DBMS is usually
very large (10® or even more). From the IR field it is known that usually half of all objects (e.g.
documents) in the considered collection contains at least one query term, meaning that even if a
system only considers these objects it still has to process a lot of them. The second reason is that
ranking certain media types can be very expensive per media object. So the number of objects and
the computational effort needed just to evaluate one single object both quickly result in excessive
computational costs, unless we start making use of the special characteristics of the data to speed
up the querying process.

The problem of top N MM query optimization is to find such techniques that utilize this knowledge,
in an effort to:

1. Limit the total set of objects of all types taken into consideration during the ranking process
as much and as soon as possible,

2. Limit the set of objects with expensive ranking functions, before ranking them, by using
ranking results from objects with less expensive ranking functions, in case more than one
media type is involved in the query.

Several techniques are known in literature from both the IR field and the database field to achieve
such effects more or less thoroughly. In this document we provide an overview of those techniques



and try to sketch directions in which those concepts might become interesting to be used in the
context of MM database research in our group as described previously.

3 State of the Art

3.1 IR Techniques

IR is a quite old research area (compared to MM retrieval research) resulting in a lot of different
techniques. A large group of these techniques makes use of certain statistical methods. We

mainly concentrate on (optimization) techniques concerning this group of statistics based methods
because:

e this group of techniques has been proven to work quite well, so results from this research are
more likely to be widely applicable,

o (also because of the previous reason) the techniques used in our group belong to this group
as stated in the introduction, thus already providing a suitable platform to build on, making
it much more easy to arrange for experimental verification of this research.

This section is structured as follows. First we give an overview of basic technology in the field.
Next we provide a brief overview of common optimization techniques that have been developed
over the past years in this research area. In the third subsection we briefly touch on some of the
most important advantages and disadvantages of the common approach in this field.

3.1.1 Query Processing in IR

This subsection contains two paragraphs, reflecting the two major phases in the life of an IR
system. The first paragraph addresses the first phase: indexing. The second paragraph addresses
the retrieval phase.

Indexing Phase The basic components of a statistics based information retrieval system, con-
structed during some kind of indexing process, are*:

¢ a (usually large) set of text documents (denoted by {d;}),
o a set of all terms occurring in the documents set (denoted by {t;}),

e a set containing the frequency of every term per document, i.e. the number of times each
term occurs in each document (denoted {if;;}),

e a set containing the in document frequency of every term, i.e. the number of documents a
term occurs in (denoted by {df;}).

Usually the {tf;;} and {df;} are both normalized to eliminate the effects of document respectively
collection size. The resulting sets are respectively denoted as {ntf;;} and {ndf;}.

The parts we describe here are the most important ones. However, a lot of additional techniques
are known and used to increase computational efficiency and speed and minimize requirements on
system resources like disk, memory and/or CPU. Also some analysis algorithms may be run over
the terms like stemming (reducing several terms to one common base form: for instance convert
different forms of the same verb to its base).

2For a more elaborate overview [Bro95]



Retrieval Phase Given a set of query terms (denoted by {gx}) it takes usually the following
steps to compute a ranking of the document set {d;}:

1. Compute the subset of the terms known by the system and occurring in the query, let us
denote this set by QT := {t;} N {qx}-

2. Compute the subset of the documents known by the system which contain at least one of
the terms in QT'.

3. Compute the corresponding subsets of {ntf;;} and {ndf,}, here denoted by {ntf;}' and
{ndf;} respectively.

4. Compute the belief? contributions per document per term

B := {bel;j|bel;j = %ff”-, nif;; € {ntfij}’,ndfi € {ndf;}'}

5. Compute the final belief per document by aggregating the belief contributions per document
per term.

The quotient -';571 is usually formulated as the product ntf,; - nidf ;, where nidf; = #.

Since a user is limited in his/her perception only a limited set of most relevant (i.e. highest
ranking) documents is to be presented to the user. Therefore the result of the last step above is
usually followed by a selection and ordering of the highest ranking documents. The number of
documents finally returned to the user is in most cases not more than a very small subset of the
whole documents set {d;}.

3.1.2 Query Optimization in IR

In this subsection we provide a brief overview of the most important optimization techniques in
the IR field.

This section is divided in three paragraphs. The first paragraph describes the basic algorithm
on which most of the optimization techniques (that we are interested in) are based. The second
paragraph shows the possible consequences for the quality of the returned answers when using
certain versions of this algorithm. The last paragraph describes some issues for physical design of
the data storage which might help increase the profits of the algorithm in the first paragraph.

Effects of a Smarter Algorithm In IR-research a lot of effort has been done on optimizing
query processing in IR-systems. Most of the work done in this area is based on some quite simple
ideas from [Fag98, Fag99, FM]. In these papers several algorithms are proposed that stop executing
as soon as the required answers are computed. Most importantly is that these algorithms and
especially the used stop criteria are proven to be correct. This means that using these algorithms
under the given constraints will result for sure in the required set of answers or a superset of those.

The basic principle of the algorithms goes as follows (loosely formulated):
Given two sequences of equal length, say A = [a;] and B = [b;], of numbers, with |A| = |B| = n.

We want to compute a subsequence D of C, with C = [ci|e; = a; - b;], where |D| = N and
min(D) > max(C — D), meaning D contains the N highest elements of the product of A and B.

The steps of the algorithm are then (roughly speaking):

3We use the term belief here because this product is called this way in the system developed at our group.



1. Suppose we order one of the sequences, say A, descending. The resulting sequence A’ is
therefore a permutation of the original sequence A. Let’s call this permutation 7. Then:

A" = [ajla; = ax(s)]

such that:
Vie{2,...,n—=1}:a;_, > aj > aj,,

2. Create a sequence B', that has the same ordering as A':
B’ = [b}|b; = bp(s)]

3. Create an empty set E.
4. For each ascending i € {1,... ,n}:

(a) Compute v = a; x b;.

(b) IF |E| < N OR v > min(E) THEN E := EU {v}.

(c) IF |E| > N THEN E := E — {min(E)}.

(d) IF maz[b},,,...,b},] x a; < min(E) THEN stop looping over i.

5. Create sequence D from set E by ordering the elements ascending. D is the requested top
N of the product of A and B.

Both [Bro95] and [CP97] use (modified versions of) this idea to calculate the document belief-
contribution per term, also known as the tf - idf. Where #f is taken as the A and idf as B or vice
versa. In fact, this means that one computes the tf - idf of the most promising ¢f (or idf) before
the tf - idf of the lesser promising tf (or idf), hoping that not all tf (or idf) values will have to
be taken into consideration but only a certain, hopefully small, set of 'best’ ones. Of course the
algorithm takes some extra administrative overhead that will make the algorithm only profitable
in cases where the considered part of the ordered sequence A is small enough to compensate this
overhead.

Note that tf and idf are not of equal length, so formally these two sequences cannot be used in the
mentioned algorithm. By repeating each idf; value for all tf;; with corresponding i and distinct
j this little problem can be fixed. The implementation of IR techniques used in our group uses
this trick. Of course, with a slight, more or less trivial, modification of the algorithm, the desired
effect can be achieved without repeating values.

Safe and Unsafe methods An extra option is to skip the last step of ordering the final results.
In cases of IR this might be very well acceptable for several reasons. Two of these reasons are:

e The top N is the most important issue, the ordering is often less important.

o If the elements in E do not differ much, the ordering of FE is disputable since these figures
result from statistically based computations of which the error margin might be much greater
than that inter-element margin.

This point also brings me to another point in general, noted by [Bro95] as the difference between
so-called safe methods and unsafe methods of optimization:

safe methods This class of methods still return (at least) the required answers in the desired
form (i.e. ordering and such).



unsafe methods This class of methods promise to return good answers, but do not guarantee
to return all the required answers or in the desired form. Correct answers might be replaced
by other, usually just a little less optimal, answers. And, as already addressed above, the
answers might not be ordered correctly.

Since IR is by no means exact retrieval, in contradiction to querying a DBMS containing only
alphanumerical data, the good, unique answer does not exist, or cannot be determined. Ounly
good answers and better answers exist. And even the question which answer is better than the
other one is hard to answer solidly. Also, in systems where the querying process is an interactive
one with relevance feedback from the user, even the worse elements in an answer set might serve a
good purpose of providing the user with an option to tell the system what he/she explicitly does
not want.

Therefore a great reduction in query execution time might very well be preferable above a "better’
answer of which the computation takes much more time.

Effects of Physical Design One other important issue is the tuning of the storage system
underneath /within the IR-system. By placing the data on disk in the right order, with the right
clustering and appended by some efficient access accelerators, a lot of time can be saved, just
streamlining disk read IO. [Bro95] uses properties of the IR level to place the document-term
statistics efficiently ordered in an inverted file structure. The statistics are stored in descending
idf . This way he achieves two effects in one:

1. He is able to use an algorithm as described above.

2. He is able to consider a lot of different terms per block read operation. The reason for this
is that a large idf means that a term occurs in only a few documents. This results in a small
data segment in the inverted file for a certain term (per term the list of documents is small).
In turn, this means that a lot of those small document-per-term lists can be stacked in one
block.

[Bro95] implemented and tested his ideas using INQUERY, and claims interesting performance
improvements, and only a minor decrease in precision and recall.

3.1.3 (Dis)advantages of the IR approach

The main advantage of the approach in IR optimization techniques as described previously is the
fact that the element-at-a-time iteration while computing the beliefs allows recomputation of the
boundaries that form the basis for the stop criterium. As proven by [Fag98, Fag99, FM] these
accurate boundaries can result in computation of only a very minimal set of belief candidates
which of course is highly computationally efficient.

However, most IR systems tend to be quite monolithic requiring lots of reimplementation for
sometimes only minor conceptual model changes. Also the integration with other systems can be
difficult or highly inefficient [dVW99].

On the other hand, the theoretical work of [Fag98, Fag99, FM] is clearly very well founded and
provides means for very interesting optimizations, which also holds for the work of [Bro95]. Due
to the characteristic Zipf distribution of the indexed content data these methods often result in
very high profits with often only very limited (when using unsafe methods) or even no (when
using safe methods) loss in answer quality. However, these techniques did unfortunately not get
implemented in most of the IR systems. The work of [Bro95] was implemented using INQUERY
but we are not sure whether it is still used in the current INQUERY implementation.

The main issue that summarizes the negative aspects of IR-systems is that they tend to be quite
inflexible to adaptation of new technologies since it requires a lot of code replacements.
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Figure 1: Query processing layers in a typical relational DBMS.

3.2 DB Techniques

DBMSs were originally designed as smart data storage systems which could handle data requests
from users on a higher level than the file system of an OS can. In administrative environments
relational DBMSs have proven to be quite useful. However, that data usually consisted of just
alphanumerical parts of limited (often even fixed) lengths. Due to practical demands most DBMSs
nowadays are extensible: new data types and/or operations can be added. Often also other
functionality can be added to the DBMS like new index/access structures. Modern DBMSs also
often support OO data modeling and access interfaces instead of, or additionally to, the relational
way of handling the data, in an attempt to cope with the growing number of different uses and
stored types of data.

Note that several types of DBMSs exist. Two of the most important ones are:

o relational DBMSs (or RDBMSs),
e object oriented DBMSs (or OODBMSs).

RDBMSs is by far the oldest of these two types, and also the most widely used one. QODBMSs
might seem very interesting due to their OO nature but still are often not much more than
persistent object stores which cannot compete in efficiency and scalability with their relational
counterparts. Also attempts to build an OO layer on top of an RDBMS resulted in most cases in
unrealistically unhandy or slow systems. Since our research has more to do with relational than
OO0 data base technology we will not elaborate on the latter one any more.

For a more complete overview on relational database theory see [Dat95].

3.2.1 Query Processing in a DBMS

Note that relational DBMSs are designed to operate on sets providing operations to retrieve
strictly defined subsets or elements given a query. This is in contrast with the basic design of IR
systems which is usually referred to as providing inexact retrieval (as opposed to exact retrieval
in a relational DBMS).
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Figure 2: Adding query optimization to the three layered query processing architecture.

Most relational DBMSs are currently build in divided in three, independent, layers, on top of each
other:

1. Conceptual level
2. Logical level

3. Physical level

The conceptual level is the most abstract level and is mapped onto the logical level, which in turn
is mapped onto the physical level. Queries are formulated in a declarative way at the conceptual
level and translated into an algebra at the logical level. The algebra then is translated to methods
on the physical level [Figure 1].

The current standard conceptual level query language is SQL?, with both calculus and algebra
elements in it [Ste95]. The algebra at the logical level and the operators at the physical level
are system specific whereas the implemented SQL version only shows minor extensions and/or
differences, usually concerning constructs not or not clearly defined in the standard. Another
importing issue to note is that the conceptual level language (i.e. SQL) usually is tuple oriented
whereas the two lower levels usually are set based.

3.2.2 Query Optimization in a DBMS

As described in [Dat95, Ste95, Cha9d8] and shown in [Figure 2] optimization can take place at
almost every level in the system.

Just a naive translation from a calculus expression into an algebra expression will in most cases
result in a so called most costly expression [Ste95]. This means that the resulting algebra expression
has even worse execution time than nested loop iteration over all elements in the data set processed
for the query. Therefore it is not also possible to optimize at all levels but necessary to take
advantage of every possibility, too.

The basic conceptual components of a relational query optimizer are [Figure 2J:

4SQL = Structured Query Language



Calculus rewriter In this phase it is often difficult to really optimize an expression. In most
cases it it used to transform the expression into some normal form thus limiting the search
space for lower level optimization processes. However, normalization should be done careful
to avoid decreasing execution performance promises.

Calculus to logical algebra translator It is at this level that a lot of performance can be
gained by trying to achieve a not too naive translation since otherwise the resulting algebra
expression in most cases would provide a very inefficient starting point for any further opti-
mization. However, in literature not much information is available on this important link in
the chain of query processing.

Logical algebra rewriter At this level algebra equivalence rules (based on common algebra
properties like commutativity, associativity, distributivity, idempotency, etc.) are used to
transform the expression into a form that should translate more easily and more efficiently
into the physical algebra at the physical layer. Most systems do not use a cost function at
this level but just (simple) heuristics that usually produce better expressions than the initial
input. Commonly known heuristics are: push select/project down or the more sophisticated
predicate move around [HS93, LMS94, Hel98], most restrictive join first.

Logical algebra to physical algebra translator This stage aims at translating the logical al-
gebra expression into the most efficient program at the physical level. It is usually at
this stage that a cost model of the physical layer is used to find the cheapest executable
program. The costs of a certain program are computed by estimating the costs of each op-
erator given known or estimated data properties such as number of tuples [Dat95], ordering
[SSM96, CK97a, CK97b, CK98, DR99], availability of access accelerators, etc. Also for each
operator the properties of the results are computed/estimated which in turn can server as
input for costs computations of depending operators [Cha98].

Plan generator The plan generator is responsible for keeping track of all possible plans that
have been or are taken into consideration. In [Figure 2] we placed it as a global component
next to the three other stages. This is just a way of displaying things because at a certain
level knowledge of all lower levels might be required. The reason that such knowledge is
required at the higher level is that a certain decision at that level might result in better or

worse optimizable/executable query plans at subsequent lower levels, thus influencing that
high level decision.

3.2.3 (Dis)advantages of the DB approach

The main advantages of any DBMS is its flexibility to store and manipulate a lot of data in
a more or less abstract manner. In particular the ANSI/SPARC properties allow changes at a
certain level without having to modify large parts in other levels of the system [Dat95]. The
price of this layered structure is a lot of inefficiency. Fortunately the fact that many systems
use one or more algebras to handle the data allows for a great deal of optimization. The other
advantage is that the optimization is usually better than in cases where a user needs to implement
the physical operator implementation by himself: the system can incorporate of the shelf optimal
implementations which resembles the union of programming skills of several expert programmers
together [Dat95]. Also because of the set-based/bulk behavior of, in particular relational systems,
IO can often be arranged more efficiently since several types of overhead can be eliminated over
larger quantities of data.

One of the few disadvantages of this bulk behavior and/or lack of control of how elements are
iterated over finally, is the fact that stop criteria as the ones used in section 3.1.2 often cannot be
computed equally well, disallowing such efficient breaks in computing over large sets.



4 Our Approach

In this section we describe our approach concerning top N MM query optimization, given the
problems and solutions provided by the IR and DB research areas as described in the previous
sections.

First we describe briefly our DB environment. Next we give an overview of our approach including
some first results.

4.1 Owur DB Environment

In this section we briefly describe the software systems that we have been using and/or developing
lately. We start with introducing Monet, a main memory DBMS developed at CWI5. Next we will
introduce Moa, a structured object algebra, currently build on top of Monet. After introducing
both Monet and Moa, we give an introduction to the MM retrieval work that has been going on
at that this group and that is being implemented using Moa.

4.1.1 Monet

Monet® is the main memory DBMS that is being developed by CWI. Monet is able to cope
with modern day DBMS requirements emerging from areas like DSS” and MM retrieval. These
areas often use wide tables with very many elements/tuples. However, during query processing
only a few columns are needed at a time. To exploit this property Monet uses full vertically
fragmentation, resulting in a binary data model in which tables consist of only two columns, so
called BATs®. Relations that need more than two columns can be made by joining several BATs.
This vertical fragmentation allows Monet to keep the hot set® in main memory, in contrast with
most other DBMSs. This way Monet outperforms most other systems when used in situations
that wide relations with many elements do exists but only a few fields are part of the hot set, like
often occurs in DSS and MM retrieval. Monet has proven to be fast in those cases using several
benchmarks like 007 [vdBvdH96], TPC-D [BWK98] and Wisconsin.

In the scope of this paper it is also important to note that Monet uses a dynamical physical
query optimization system, choosing the right physical operators just before the operator needs
to be executed, thus ruling out the usual error introducing guess work during optimization. The
resulting better optimization decisions, facilitate speeding up query execution even more.

4.1.2 Moa

Moa [BWK98] is an extensible structured object algebra which is mapped on top of a binary
physical algebra. Currently Monet is used as the binary algebra layer underneath Moa. Moa is
designed as an intermediate language, e.g. logical algebra, on which a high level language like
OQL could be mapped. Moa was originally developed for GIS!? and is being extended to serve
other areas, like content based retrieval, as well.

One of the key advantages of Moa over other systems is that the structured object nature of
Moa allows for unlimited nesting of structures without loss of performance. Most other systems
that allow deep/unlimited nesting usually tend to be very slow since they iterate in a depth-first
manner through the nested structures during query processing. In case of a large database with

5CWI = Center for Mathematics and Computer Science, Amsterdam, The Netherlands.

8See [BK95, KBQ197, BK] or on the CWI web site http://www.cwi.nl/~monet for more info.
7DSS = decision support system.

8BAT = Binary Association Table

9hot set = parts of the database under consideration at a certain moment during query processing
10GIS = geographic information system.
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many levels of nesting this element-at-a-time query processing has proven to highly inefficient
compared to the set-at-a-time way of query processing common to most relational DBMSs, that
do not allow nesting at all. Moa combines the best of both worlds in that it allows nesting but
processes queries in a set-based manner.

4.1.3 MM Retrieval

Exploiting the facilities of Moa and Monet a MM DBMS is being built. Currently a basic extensible
open distributed architecture has been set up [HVBB98] providing a framework around Monet
and Moa. With respect to the content retrieval part currently a text retrieval system has been
implemented in the Moa/Monet environment [dV98, dVW99]. The retrieval model originally used
resembles the INQUERY inference network [CCH92]. Lately another retrieval model [Hie98],
which had proven been to work quite good on TREC, has been implemented in the system as an
alternative for the INQUERY model. Our text retrieval DBMS using this new model has is been
evaluated at TREC-8 [VH99].

We plan to generalize the text retrieval system to become a MM retrieval system. We have
already been experimenting with audio retrieval (only on a very small an primitive scale) and
image retrieval [Do099] using the generalized text retrieval framework.

It is in the context of this MM retrieval setting where our top N MM query optimization research
is situated.

4.2 QOwur Optimization Efforts

When looking at top N MM query optimization, in particular in a setting where we use Moa on
top of Monet, the following three main topics are interesting to look into:

e Fragmentation,
e Intra v.s. inter object/ADT optimization,

e Real MM querying.

These three topics can, to some extent, be linked to the three levels in the ANSI/SPARC archi-
tecture, often, although not quite correctly, designated by:

e Physical level,
e Logical level,

e Conceptual level.

Furthermore it should be noted, that right from the start, for any of the topics, it is also necessary
to define and set a baseline for the performance of the system that will serve as a reasonable
reference point to compare an optimized version of the system with. Note that performance in
an IR or MM retrieval system does comprise more than execution time alone. Also the precision
and recall are part of the performance. Since no combination function for these three components
(execution time, precision, recall) exists, performance should be noted as the 3-tuple. Display
techniques like a 3D-projection of a plot of the performance points for different situations might
provide an easy way for humans to compare the results in a flexible way (i.e. not aggregating the
3-tuple into one number, thus not throwing away a lot of information).

11



4.2.1 Fragmentation [Physical design]

To facilitate any optimization on a higher level and to make use of the main memory characteristics
of Monet we need to (horizontally) fragment the data in Monet. In case of a real world application
the size of the data even will be that huge that fragmentation will be necessary to get things running
anyway, since otherwise memory will be too limited to do anything at all.

Looking at paragraph 3.1.2, where the ideas of [Bro95] concerning storage of IR data are explained,
fragmenting #f (or ntf) and idf (or nidf) vectors in Monet in a similar manner based on idf
(respectively nidf) seems to be an interesting first choice.

However, since we are dealing with a database system that preferably operates set based, in
contrast with the element-at-a-time approach used in the INQUERY system, the ideas of [Bro95]
are note directly applicable in our case. In other words: we have to adapt these ideas to suit a set
based way of query processing. Since we want the best of both worlds a way in between seems to
very interesting. A possible solution might be exploiting the commonly known Zipf distribution of
the IR data. The Zipf law for the English language says that that the distribution of terms over
a set of documents is hyperbolically correlated to the number of those documents they occur in.
This means for example that 5% of the terms is related to 95% of the total amount of data in the
retrieval system. These are the terms that occur in a lot of documents and therefore have a low
idf . The other 95% of the terms only is responsible 5% of the space.

Further note that the tf vectors used to compute the beliefs are in fact inverted lists noting a tf
for each term per document it occurs in. This means that using the observation about the Zipf
distribution of this vector, we get two (horizontal) fragments:

e a fragment containing the tf values corresponding with the other 95% of the terms, with
higher idf, only using 5% of the space.

¢ a fragment corresponding to 5% of the terms corresponding with the terms with the lowest
idf , but taking up 95% of the space,

Now, we can start the evaluation of a typical IR document ranking query by ignoring the second
fragment that takes 95% of the space. This way we can compute a quite good belief estimate by
only having to consider 5% of the original document statistics. Assuming that time complexity
is linear in the size of the considered vectors this reduces execution time with 95%. Some first
experiments based on this idea show that execution times at least drop with 60%.

As described in paragraph 3.1.2, this technique is unsafe, which is obvious, since not all terms are
taken into consideration thus ignoring belief contributions from those terms. And also, although
the terms that are ignored have a low idf and are therefore unlikely to contribute much to document
beliefs, this does not exclude the possibility that some indeed would have contributed significantly
in the case when they have a very high ¢f that compensates for the low idf. Resulting from the
same early experiments that showed the 60% time profit we found that in the case of the above
suggested fragmentation precision drops a few percents and recall drops not more than 30%.

Some additional, but still primitive, experiments using different percentages for fragmentation
and/or more than two fragments (up to 20) have shown that better precision and recall, ap-
proaching the non-optimized versions, or higher executions time gains, over 90%, can be achieved.
More thorough experiments need to be done to get a better view on the trade off between exe-
cution time and answer quality. We expect to be able to reach an optimization level that still
keeps the quality of the answers in terms of precision and recall equal to the non-optimized query
processing system but with at least 25% faster execution times. The test were performed using
the TREC topics 300 till 350 on the Financial Times sub collection of TREC.

We also are thinking of some other experiments. We did for instance neglect any restrictions
that need be obeyed when one wants to really exploit the benefits of main memory execution, as
provided by Monet. When running main memory it is important to keep the hot set scaled to fit in
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main memory at all time. This brings us to the question what the best fragment size and number
of fragments are to keep swapping to disk as limited as possible. In case of too many too small
fragments, a lot of administrative overhead will result in a loss of speed. Also small fragments
contain fewer information needed at query processing time increasing the probability that several
fragments need to processed to reach a certain level of answer quality. In case of too large
fragments the chances that other fragments need to be considered due to a lack of information are
low. However, processing a single large fragment can take much time, approaching the evaluating
time of an unfragmented database or even worse due to administrative overhead. Also, the case
that extra fragments need to be considered still is not excluded and when that occurs it increases
execution time extensively.

4.2.2 Intra v.s. inter object/ADT optimization [Logical design]

Although the techniques used in the fragmentation approach described in the previous paragraph
are mostly realized on the physical level, in our case Monet, it certainly has several consequences for
the logical level. First of all it is obvious that given the different physical lay out the translation
of logical algebra expressions to physical algebra expressions need to be adapted accordingly.
Secondly, the new translations allow the easy introduction of some special top N operators [Bro95,
CK98] on the logical level, that can exploit the new opportunities in a better way than was possible
before. This can of course be seen as giving up some of the independency between the two layers
but it is also likely to be interesting from an optimization point of view since it allows more efficient
expressions at the logical level when dealing with top N queries.

However, since the best mapping of logical algebra expressions on physical expressions is often
dependent on the application area, most systems provide extensibility, as does Moa. This allows
for adding new structures and/or operators to the algebra to suit specific needs, thus adding the
best possible translation(s) for that case. Extensibility of systems is quiet common but keeping
optimization at an acceptable level is still a very large problem.

In the PREDATOR project [SP97] a partial solution for this problem is given. Their system
architecture does allows for new structures and operators to be added using, what they call,
E-ADTs, or Enhanced ADTs. E-ADTs are ADTs but also provide optimization algorithms for
optimizing operations in that ADT. The global logical query optimizer delegates optimization
to the E-part of the E-ADT if it finds itself unable to optimize the ADT operators in a query
expression.

This is, as we said, only a partial solution. E-ADTs are only aware of themselves so they are only
able to optimize when two or more operations on that particular E-ADT are involved [Example
1] but fail when operators of distinct ADTs interact [Example 2].

Example 1 (E-ADT optimization succeeds [SP97]) Consider an Image ADT with two op-
erators: clip and rotate.

The clip operator takes as operands an image and the  and y coordinate of the upper left and
lower right corner of a rectangle within the bounds of the given image.

Suppose we have an image myimage of 40 pizels wide and 60 pizels high.

An example use of the clip operator would be:
clip(myimage,0,0,9, 19)

which produces a sub image of 10 pizels wide and 20 pizels high of myimage containing its upper
left corner (image z coordinates increase in the normal way to the right but y coordinates increase
usually downwards instead of upwards).

The rotate operator takes as operands an image and the angle to rotate over in degrees, counter
clockwise.
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An example use of the rotate operator would be:
rotate(myimage, 90)
which produces the a copy of myimage placed on its left side.

The following query, combining these two operators, is also valid:
clip(rotate(myimage, 90),0,0,9, 19)

which produces the upper left corner area of 10 pizels wide by 20 pizels high of the rotated version
of the image.

An alternative expression with ezactly the same answer is:

rotate(clip(myimage, 20,0, 9, 39), 90)

Since the rotate in the second expression has to rotate a smaller images than in first expression,
whereas the clip region stays of the same size, the second expression will be erecuted faster. The
E-ADT system now provides the means to the optimizer to translate the first expression, when
encountered, into the second one.

Example 2 (E-ADT optimization fails) Let’s look a a system that has a LIST and a BAG
structure, both provided by separate ADTs. Also, let’s assume that both have a select operator that
behaves in the usual way, and takes an upper and lower bound to select a range of values. For
ezample

select([1,2,3,4,4,5],2,4)

selects all elements from the list [1,2,3,4,4,5] with values ranging from 2 up to and including 4.
This will result in the list

[2,3,4,4]

Besides the select, LIST also provides a projecttobag operator which produces a BAG containing
all the elements of the LIST the operator acts on. For example

projecttobag([1,2,3,4,4,5])

results in the bag
{1,2,3,4,4,5}

Now, consider the following expression

select(projecttobag([1,2,3,4,4,5]),2,4)

Current optimizer technology, including the E-ADT system of PREDATOR, cannot optimize this
expression. However, anybody can see that

projecttobag(select([1,2,3,4,4,5],2,4))

produces exactly the same answer but can be exzecuted more efficient than the original expression.
The second expression can be evaluated even more efficient when the system is aware of the ordering
of the elements, which in case of a list is well defined, but formally does not exist for a bag.

Now note that a top N operator is in fact a special select operator on a list structure. Furthermore,
more sophisticated versions of expressions like in [Example 2] often occur in top N queries (it goes
to far to explain those expression here). This means that it would be preferable to have some
optimizer system that can cope with such expressions incorporating operators from different ADTs.
We propose to introduce an extra optimizer layer, between the global logical optimizer and the
optimizer parts within the (E)ADTs, to fill the gap. We call this an inter ADT (or in generalized
case: inter object) optimizer, whereas we call the E part of the E-ADT system an intra ADT (or
intra object in the generalized case) optimizer.
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4.2.3 Real MM querying [Conceptual design]

Our final challenge is to make our top N query optimizer MM aware. Since we plan to generalize our
DBMS to act as a real MM DBMS that is able to provide facilities to query different media types in
an integrated manner in one query expression, we also get a system that provides new opportunities
to optimize. Consider for instance the case in which we deal with both alphanumerical data and
images. The alphanumerical data might contain classification information or who the author is of
a certain image, so we might be interested in asking for images with certain content and require
they are made by a given author. The big question is now, in what order do we process the
different query parts: are we going to select on the author field first and then look at the content
or do we select on image content prior to selecting the ones with the right author. In this case one
would tend to prefer the first option since selecting on alphanumerical attributes usually is much
cheaper than processing images on content. However, when dealing with a query that incorporates
two equally expensive media types this order is not so obvious. To solve this problem one again
needs inter ADT /object optimization facilities, in this case augmented with cost information. It
is only at the inter ADT level that a system can decide properly, having an idea of the execution
costs of the involved ADT operators given their operands, what operator should be executed first
or second. This type of cost based query optimization at the logical level and in a MM context
is entirely new and we see it as a very interesting and promising area to look into. Note that
the conceptual level now having to deal with more than one media type is the key reason for the
necessity of the introduction of this new cost model.

5 Concluding Remarks

By providing an overview of existing IR and database optimization techniques and describing
three important research topics we have tried to demonstrate that still a lot of work has to be
done when one wants to optimize top N queries in a MM database environment.

The three topics as described can be seen as relatively separate topics. On the other hand, it also
might be clear that they facilitate and use each other to a certain extent. We are also aware of the
fact that the mentioned topics might very well be much larger than depicted here and therefore
might not all be solved in the near future due to time limitations. For this reason we have chosen
to just start at the ground level, which fragmentation. Since this is more a physical issue, whereas
our interest in mainly in the logical level of Moa, we will set up just a basic fragmentation and
do not plan to investigate it more than necessary to suit the use Monet environment. That way
we can proceed on the, in our opinion, more interesting part of inter ADT optimization. The real
MM query optimization will probably to far fetched for the near future and is left for the long
term.

Our goal for the next few years is to set up a good physical basis, as said, and build a prototype
optimizer for Moa, including an inter ADT layer. If all works out fine this will provide a new
kind of query optimizer that, in contrast with the current query optimizers, is suited to optimize
modern day DBMS in a MM environment.
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